{picture}
environment:
\begin{picture}(110,50)
...
\end{picture}
\unitlength
).
\put(x,y){<>}
command. (x,y)
- the coordinates of the object (the origin of the coordinates is the lower left corner of the canvas!) In curly brackets, the object to be drawn. Possible objects:
\put(10,15){ }
\line(1,-2){20}
. Here, 1 / -2 is the angular coefficient of the segment, 20 is the length of the projection on the abscissa axis.\vector
command. The parameters are the same as the line.\circle{<>}
.\circle*{<>}
.\oval(<>,<>)
.\qbezier(22,2)(120,20)(20,77)
- in brackets the coordinates of reference points.\multiput(x, y)(dx,dy){n}{<>}
. Here (x, y)
are the coordinates of the first object, (dx,dy)
is the increment of coordinates, n
is the number of objects. A little example:
\begin{picture}(100,80)
\multiput(10,70)(8,-6){8}%
{\circle*{3}}
\end{picture}
picture
environment does not allow empty lines, i.e. either all the code should go in one line, or a percentage is put at the end of each one.
\input xy
\xyoption{all}
\usepackage[all]{xy}
.
\xymatrix{ ... }
. The matrix is described inside the environment. Matrix elements in the row are separated by the symbol " &
". Lines are separated by " \\
". Example:
\xymatrix{ U \ar@/_/[ddr]_y \ar@/^/[drr]^x
\ar@{.>}[dr]|-{(x,y)} \\
& X \times_Z Y \ar[d]^q \ar[r]_p
& X \ar[d]_f \\
& Y \ar[r]^g & Z }
\ar
command. The team has a lot of modifications:
\ar[hop]
. The options are u, d, l, r, ur, ul, dl, dr, drr, and so on. Example: \ar[ur]
\ar@style[hop]
. Some options are: @{=>}
, @{.>}
, @{:>}
, @{~>}
, @{-->}
, @{-}
, @{}
. Please do not confuse with smiles))^
" - the label on the top, " _
" - from the bottom, " |
" - break the arrow. Example: $\xymatrix@1{ X\ar[r]^a_b & Y & Z\ar[l]^A_B }$
@/^/
, @/_/
, @/_1pc/
, etc.$\xymatrix{ {\bullet} \ar@{-}[r] & {\bullet} \ar@{.}[d] \\
{\bullet} \ar@{--}[u] & {\bullet} \ar@{->}[l] \ar@{=}[ul] }$
$\xymatrix@1{ A \ar[r]^f \ar[dr]_{f;g} & B \ar[d]^g \ar[dr]^{g;h} \\
& C \ar[r]_h & D }$
$\xymatrix{
A \ar[d]_f \ar[r]^f & B \ar[d]^g \ar[dl]|{iB} \\
B \ar[r]_g & C }$
$\xymatrix{ x \ar@(ul,dl)[]|{id} \ar@/^/[rr]|f && f(x)
\ar@/^/[ll]|{f^{-1}} } $
$\xymatrix{ 1 \ar[rr] ^-{1000000x}
\ar[dr]_(.2){2000x}|!{[d];[rr]}\hole
&& 1000000 \\
1000 \ar[r] _{2x} \ar[urr] _>>>>{x^2} & 2000 }$
Source: https://habr.com/ru/post/48099/