nodules
(nodes), everything else will remain unchanged. As soon as the marked objects are presented in the form of numbers, you can proceed to the creation of TFRecords. """ Usage: # From tensorflow/models/ # Create train data: python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record # Create test data: python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import io import pandas as pd import tensorflow as tf from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple, OrderedDict flags = tf.app.flags flags.DEFINE_string('csv_input', '', 'Path to the CSV input') flags.DEFINE_string('output_path', '', 'Path to output TFRecord') FLAGS = flags.FLAGS # TO-DO replace this with label map def class_text_to_int(row_label): if row_label == 'raccoon': return 1 else: None def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path): with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def main(_): writer = tf.python_io.TFRecordWriter(FLAGS.output_path) path = os.path.join(os.getcwd(), 'images') examples = pd.read_csv(FLAGS.csv_input) grouped = split(examples, 'filename') for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) writer.close() output_path = os.path.join(os.getcwd(), FLAGS.output_path) print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__': tf.app.run()
raccoon
put your own mark. In the example above, these are nodules
, nodes. If your model will need to define several kinds of objects, create additional classes. python generate_tfRecord.py --CSV_input=data/train.CSV --output_path=data/train.record
python generate_tfrecord.py — CSV_input=data/test.CSV — output_path=data/test.record
sd_mobilenet_v1_coco
used sd_mobilenet_v1_coco
.ssd_mobilenet_v1_coco.config
. item { id: 1 name: 'nodule' }
nodule
class a different name. If there are several classes, increase the id
value and enter new names. #before num_classes: 90 #After num_classes: 1
batch_size
value. batch_size: 24
ssd_mobilenet_v1_coco
model that we downloaded earlier. #before fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" #after fine_tune_checkpoint: "ssd_mobilenet_v1_coco/model.ckpt"
#before train_input_reader: { tf_record_input_reader { input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record" } label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt" } #after train_input_reader: { tf_record_input_reader { input_path: "data/train.record" } label_map_path: "data/object-detection.pbtxt" }
#before eval_input_reader: { tf_record_input_reader { input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record" } label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt" shuffle: false num_readers: 1} #after eval_input_reader: { tf_record_input_reader { input_path: "data/test.record" } label_map_path: "data/object-detection.pbtxt" shuffle: false num_readers: 1}
cd models/research/object-detection
python train.py --logtostderr \ --train_dir=training/ \ --pipeline_config_path=training/ssd_mobilenet_v1_coco.config
python eval.py \ --logtostderr \ --pipeline_config_path=training/ssd_mobilenet_v1_coco.config \ --checkpoint_dir=training/ \ --eval_dir=eval/
#To visualize the eval results tensorboard --logdir=eval/ #TO visualize the training results tensorboard --logdir=training/
No module named deployment on object_detection/train.py
# From tensorflow/models/research/ export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
Source: https://habr.com/ru/post/422353/
All Articles