Take any positive integer n. If it is even, then divide it by 2, and if it is odd, then multiply by 3 and add 1 (we get 3n + 1). On the resulting number, perform the same actions, and so on.
while (number > 1) { if (number % 2 === 0) number = number / 2; else number = 3 * number +1; }
22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.There are 16 steps in total. And there are 5 true steps that are actually transferred to another number set:
7, 11, 17, 13, 5.The true step Sa (n) will be called the number of operations 3n + 1 over the number needed to reach unity.
Sn (0) | Sn (1) | Sn (2) | Sn (3) | Sn (4) | Sn (5) | Sn (6) | Sn (7) | Sn (8) | Sn (9) | Sn (10) | Sn (11) | Sn (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | five | 3 | 17 | eleven | 7 | 9 | 25 | 33 | 43 | 57 | 39 | 105 |
four | ten | 6 | 34 | 22 | 14 | 18 | 49 | 65 | 86 | 59 | 78 | 203 |
eight | 20 | 12 | 35 | 23 | 15 | nineteen | 50 | 66 | 87 | 114 | 79 | 209 |
sixteen | 21 | 13 | 68 | 44 | 28 | 36 | 51 | 67 | 89 | 115 | 153 | 210 |
32 | 40 | 24 | 69 | 45 | 29 | 37 | 98 | 130 | 182 | 118 | 156 | 211 |
64 | 42 | 26 | 70 | 46 | thirty | 38 | 99 | 131 | 173 | 119 | 157 | 406 |
128 | 80 | 48 | 75 | 88 | 56 | 72 | 100 | 132 | 174 | 228 | 158 | 407 |
256 | 84 | 52 | 136 | 90 | 58 | 74 | 101 | 133 | 177 | 229 | 305 | 409 |
512 | 85 | 53 | 138 | 92 | 60 | 77 | 102 | 134 | 178 | 230 | 306 | 418 |
P(0,k)=2β2k.
Sn (0) | Sn (1) | Sn (2) | Sn (3) | Sn (4) | Sn (5) | Sn (6) | Sn (7) | Sn (8) | Sn (9) | Sn (10) | Sn (11) | Sn (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
five | 3 | 17 | eleven | 7 | 9 | 25 | 33 | 43 | 57 | 39 | 105 | |
21 | 13 | 35 | 23 | 15 | nineteen | 49 | 65 | 87 | 59 | 79 | 203 | |
85 | 53 | 69 | 45 | 29 | 37 | 51 | 67 | 89 | 115 | 153 | 209 | |
341 | 113 | 75 | 93 | 61 | 77 | 99 | 131 | 173 | 119 | 157 | 211 | |
1365 | 213 | 141 | 181 | 117 | 81 | 101 | 133 | 177 | 229 | 305 | 407 |
P(k)=4kβ1 over3.
P(k)=4k0+1,with k0=1.
P(k)=3n+1 over22 alpha;22 alphaP(k)=3n+1;3n=22 alphaP(k)β1;
n(P(k), alpha)=22 alphaP(k)β1 over3;
n(P(k), alpha, beta)=22 alpha+ betaP(k)β1 over3;
n(5, alpha, beta)=22 alpha+ betaβ5β1 over3;
Set from Sa(n+1) generated by function n(P(k), alpha, beta) from each element of the set from Sa(n) .Then, knowing this - you can still reduce the table, removing all the generations multiples of alpha.
Sn (0) | Sn (1) | Sn (2) | Sn (3) | Sn (4) | Sn (5) | Sn (6) | Sn (7) ... |
---|---|---|---|---|---|---|---|
five | 3 | 17 | eleven | 7 | 9 | ... | |
113 | 75 | 201 | 267 | 715 | ... | ||
227 | 151 | 401 | 1073 | 1425 | ... |
P (k) = 3 | P (k) = 113 | P (k) = 227 |
---|---|---|
3 from Ξ± = 0 generates: Nothing 13 from Ξ± = 1 generates: 17 69 277 1109 4437 53 from Ξ± = 2 generates: 35 141 565 2261 9045 213 from Ξ± = 3 generates: Nothing 853 from Ξ± = 4 generates: 1137 4549 18197 72789 291157 | 113 from Ξ± = 0 generates: 75 301 1205 4821 19285 453 from Ξ± = 1 generates: Nothing 1813 from Ξ± = 2 generates: 2417 9669 38677 154709 618837 7253 from Ξ± = 3 generates: 4835 19341 77365 309461 1237845 29013 from Ξ± = 4 generates: Nothing | 227 from Ξ± = 0 generates: 151 605 2421 9685 38741 909 from Ξ± = 1 generates: Nothing 3637 from Ξ± = 2 generates: 4849 19397 77589 310357 1241429 14549 from Ξ± = 3 generates: 9699 38797 155189 620757 2483029 58197 from Ξ± = 4 generates: Nothing |
17, 35, 69, 75, 141, 151, 277, 301, 565, 605, 1109, 1137, 1205, 2261, 2275, 2417, 2421, 4437, 4549, 4821, 4835, 4849, 9045, 9101, 9669 9685, 9699, 17749, 18197, 19285, 19341, 19397, 19417 ...And removing the degree alpha>0 , we get:
17, 75, 151 ...That is, it all comes down to:
n(P(k), beta)=2 betaP(k)β1 over3;
Function n( gamma, alpha, beta) where gamma - any number multiple of 3 forms an empty set β¨.A(n( gamma), alpha, beta)=β¨.
Function n( lambda, alpha, beta) where lambda - any number generated gamma at beta=2 forms a set of numbers K belonging to a set of natural numbers N.K(n(P( gamma), alpha,2))βN.
Function n(P( lambda), alpha, beta) at beta=1 forms a set of numbers L belonging to a set of natural numbers N.L(n(P( lambda), alpha,1))βN.
n(P(k), alpha, beta)=22 alpha+ betaP(k)β1 over3;
P(0,k)=2β2k.
n(P(k), alpha, beta, epsilon)=22 alpha+ betaP(k)β1 over3β2 epsilon.
n(k, alpha, beta, epsilon)=2 epsilon22 alpha+ beta(4k+1)β1 over3;
Is it the reverse that any of the natural numbers definitely belongs to any sequence from n(k) ?If so, then it is entirely possible that Collatz was right.
function collatsSequence( number, sequenceLength, alpha, epsilon ) { // , // number let set = []; // while (number % 2 === 0) number /= 2; // , // number, sequenceLength for (let k = 0; k < sequenceLength; k++) { // alpha for (let a = 0; a < alpha; a++) { // , if (number % 3 === 0) break; // beta = 1 let numWithBeta = (number * 2 ** (2 * a + 1) - 1) / 3; // 3 beta === 1 // 3 beta === 2 if (Math.floor(numWithBeta) !== numWithBeta) // beta = 2 numWithBeta = (number * 2 ** (2 * a + 2) - 1) / 3; // epsilon for (let e = 0; e < epsilon; e++) set.push(numWithBeta * 2 ** e); } // number = number * 4 + 1; } return set; } console.log( collatsSequence(5, 5, 2, 2) ); // [ 3, 6, 13, 26, 113, 226, 453, 906, 227, 454, 909, 1818 ]
Source: https://habr.com/ru/post/419075/
All Articles