📜 ⬆️ ⬇️

Boschernitsana theorem

The article provides a simple proof that the mapping of a compact metric space into itself, not reducing the distance, is an isometry.



Display f:E rightarrowE metric space with metric  rho( cdot, cdot) called isometry if for any x,y inE fair equality  rho(x,y)= rho(f(x),f(y)) . We prove the following statement here:

Theorem. If a f:E rightarrowE mapping of a compact metric space into itself, such that
')
 rho(x,y) leq rho(f(x),f(y))(1)

for any x,y inE then mapping f - isometry.

Let us recall some simple statements about metric compacts and introduce some conventions and definitions necessary for further discussion.

Through |A| we will denote the number of elements of a finite set A .

For x inE and  varepsilon>0 lots of Q_ {x, \ varepsilon} = \ {y: y \ in E, \ rho (x, y) <\ varepsilon \}Q_ {x, \ varepsilon} = \ {y: y \ in E, \ rho (x, y) <\ varepsilon \} let's call  varepsilon - point neighborhood x (or an open ball centered at x and radius  varepsilon ).

Final set A subsetE let's call  varepsilon -network in E (or simply  varepsilon network) if for any point x inE there is a point y inA such that  rho(x,y)< varepsilon . Lots of B subsete let's call  varepsilon - sparse if  rho(x,y) geq varepsilon for any x,y inB such that x neqy .

For any finite set A = \ left \ {a_1, \ ldots, a_m \ right \} \ subset EA = \ left \ {a_1, \ ldots, a_m \ right \} \ subset E denote by l(A) amount  sumi leqj rho left(ai,aj right) . Magnitude l(A) let's call the length of the set A .

1. Let the sequence \ left \ {a_n \ right \}\ left \ {a_n \ right \} , \ left \ {b_n \ right \}\ left \ {b_n \ right \} elements of the set E converge accordingly
to points a,b inE . Then  rho left(an,bn right) rightarrow rho(a,b) at n rightarrow infty .

Proof . Consider obvious inequalities.

 rho left(an,bn right) leq rho(a,b)+ rho left(an,a right)+ rho left(bn,b right)(2)

 rho left(an,bn right)+ rho left(an,a right)+ rho left(bn,b right) geq rho(a,b)(3)

Because an rightarrowa , bn rightarrowb at n rightarrow infty then for  varepsilon>0 there is such a natural N that for all n>n will be

 rho left(an,a right)< frac varepsilon2, rho left(bn,b right)< frac varepsilon2(4)

Of (2),(3),(4) follows that  left| rho(a,b) rho left(an,bn right) right|< varepsilon for all n>n .

2. For each  varepsilon>0 at E there is an ultimate  varepsilon -network.

Proof . Open Ball Family \ left \ {Q_ {x, \ varepsilon} \ right \}\ left \ {Q_ {x, \ varepsilon} \ right \} where x runs through E is a coating E . T. to. E compact, choose the final family of balls \ left \ {Q_ {x_1, \ varepsilon}, \ ldots, Q_ {x_m, \ varepsilon} \ right \}\ left \ {Q_ {x_1, \ varepsilon}, \ ldots, Q_ {x_m, \ varepsilon} \ right \} also covering E . It is clear that many A = \ left \ {x_1, \ ldots, x_m \ right \}A = \ left \ {x_1, \ ldots, x_m \ right \} - the ultimate  varepsilon -network.

3. Space E limited. Namely, there is such a number d>0 , what  rho(x,y)<d for any x,y inE .

The proof immediately follows from 2. Indeed, we set g= underseti neqj max left(xi,xj right) where xi , xj - elements  varepsilon -networks A . It's clear that  rho(x,y) leqg+2 varepsilon .

4. If B = \ left \ {a_1, \ ldots, a_n \ right \}B = \ left \ {a_1, \ ldots, a_n \ right \} - the ultimate  frac varepsilon2 - network in E then for any  varepsilon - sparse set K will be |K| leq|B| i.e. |K| leqn .

Proof . Pool balls $ inline $ \ underset {i = 1} {\ overset {n} {\ unicode {222a}}} Q_ {a_i, \ frac {\ varepsilon} {2}} $ inline $ covers E . If a |K|>n then two different elements from K will be in one of the balls Qai, frac varepsilon2 that contradicts the fact that K -  varepsilon - sparse set.

5. To each  varepsilon -resolved set A subsetE set the number l(A) - its length. We have already proven that a function that puts any  varepsilon -resolved set A in line number |A| is limited. Note that the function that each  varepsilon -resolved set A subsetE matches its length l(A) is also limited.

6. Let c= supl(A) where  sup taken on all  varepsilon - sparse sets A subsetE . Then fair

Lemma 1. There is  varepsilon - sparse set C = \ left \ {a_1, \ ldots, a_k \ right \} such that l(C)=c , C is an  varepsilon -network in E , f(C) is also  varepsilon -network in E and for any ai,aj inC will be  rho left(ai,aj right)= rho left(f left(ai right),f left(aj right) right) .

7. Lemma 2. Mapping f continuously on E . More precisely: if  rho(x,y)< varepsilon for any x,y inE then  rho(f(x),f(y))<5 varepsilon .

Proof . Will consider  varepsilon -network C from Lemma 1. If x does not belong to the ball Qai, varepsilon then x not belong Qf left(ai right), varepsilon . This means that there is such i , what x inQai, varepsilon and f(x) inQf left(ai right), varepsilon . Similarly, there is such j , what y inQaj, varepsilon and f(y) inQf left(aj right), varepsilon . Rate  rho(f(x),f(y)) . It's clear that  rho(f(x),f(y))< rho left(f left(ai right),f left(aj right) right)+ varepsilon+ varepsilon= rho left(ai,aj right)+2 varepsilon . And since  rho(x,y)< varepsilon and x inQai, varepsilon , y inQaj, varepsilon then  rho left(ai,aj right)<3 varepsilon . Consequently,  rho(f(x),f(y))<5 varepsilon .

So, we proved that f continuously displays E at E . From Lemma 1 it follows that for each  varepsilon>0 exists  varepsilon - network in E such that f preserves the distance between the elements of this network. So for any points x,y inE can find sequences xn rightarrowx , yn rightarrowy such that  rho left(f left(xn right),f left(yn right) right)= rho left(xn,yn right) . But  rho left(xn,yn right) rightarrow rho(x,y) at n rightarrow infty . From the continuity of the display f follows that f left(xn right) rightarrowf(x) , f left(yn right) rightarrowf(y) at n rightarrow infty . Consequently,  rho left(f left(xn right),f left(yn right) right) rightarrow rho(f(x),f(y)) at n rightarrow infty . And since for any n equality is fulfilled  rho left(xn,yn right)= rho left(f left(xn right),f left(yn right) right) then  rho(x,y)= rho(f(x),f(y)) .

Comment


This proof of the theorem of Boschernitsan is based on conversations with my student comrade, now an American mathematician Leonid Luxemburg, during one of his visits to Moscow and is my presentation of the idea he proposed.


Slobodnik Semen Grigorievich ,
content developer for the application "Tutor: Mathematics" (see the article on Habré ), Ph.D. in Physics and Mathematics, teacher of school mathematics 179 Moscow

Source: https://habr.com/ru/post/417225/


All Articles