import matplotlib.pyplot as plt from sympy import * from numpy import (zeros,arange,ones,matrix,linalg,linspace) X=[797.17, 797.25, 797.15, 797.23, 797.15, 797.08, 797.05, 797.04, 797.14, 797.14, 797.1, 797.1, 797.11, 797.11, 797.11, 797.11, 797.11, 797.1, 797.1, 797.1, 797.12, 797.12, 797.12, 797.12, 797.12, 797.12, 797.1, 797.08] n=len(X) m=int(n/4) Xsr=sum([w for w in X])/n Dx=sum([(X[i]-Xsr)**2 for i in arange(0,n,1)])/(n-1) Rxm=sum([(X[i]-Xsr)*(X[i+m]-Xsr) for i in arange(0,nm,1)])/((nm)*Dx) def fRxm(m): return sum([(X[i]-Xsr)*(X[i+m]-Xsr) for i in arange(0,nm,1)])/((nm)*Dx) ym=[fRxm(m) for m in arange(0,m+1)] xm=list(arange(0,m+1,1)) M=zeros([1,m+1]) for i in arange(0,m+1,1): M[0,i]=fRxm(i) plt.figure() plt.title(' Rx (τ). ') plt.ylabel('Rx (τ) ') plt.xlabel(' -m ') plt.plot(xm, ym, 'r') plt.grid(True)
Y=[577.59, 622.61, 602.23, 554.64, 567.67, 635.47, 608.27, 620.82, 561.73, 639.0, 550.1, 609.31, 640.45, 611.92, 579.33, 552.04, 597.73, 553.4, 605.72, 647.94, 602.26, 610.99, 575.95, 638.99, 631.86, 589.89, 608.17, 619.26] n=len(Y) m=int(n/4) Ysr=sum([w for w in Y])/n Dy=sum([(Y[i]-Ysr)**2 for i in arange(0,n,1)])/(n-1) Rxy=sum([(X[i]-Xsr)*(Y[i+m]-Ysr) for i in arange(0,nm,1)])/((nm)*Dx**0.5*Dy**0.5) def fRxy(m): return sum([(X[i]-Xsr)*(Y[i+m]-Ysr) for i in arange(0,nm,1)])/((nm)*Dx**0.5*Dy**0.5) xy=[fRxy(m) for m in arange(0,m+1)] plt.figure() plt.title(' Rxy (τ). ') plt.ylabel('Rxy (τ) ') plt.xlabel(' -m ') plt.plot(xm, xy, 'r') plt.grid(True)
P=zeros([m,1]) for i in arange(0,m,1): P[i,0]=fRxy(i) Q=zeros([7,7]) for i in arange(0,7,1): Q[0,i]=M[0,i+1] Q[1,i]=M[0,i] for i in arange(0,6,1): Q[2,i+1]=M[0,i] Q[2,0]=M[0,1] for i in arange(0,5,1): Q[3,i+2]=M[0,i] Q[3,1]=M[0,1] Q[3,0]=M[0,2] for i in arange(0,4,1): Q[4,i+3]=M[0,i] Q[4,0]=M[0,3] Q[4,1]=M[0,2] Q[4,2]=M[0,1] for i in arange(0,3,1): Q[5,i+4]=M[0,i] Q[5,0]=M[0,4] Q[5,1]=M[0,3] Q[5,2]=M[0,2] Q[5,3]=M[0,1] for i in arange(0,2,1): Q[6,i+5]=M[0,i] Q[6,0]=M[0,5] Q[6,1]=M[0,4] Q[6,2]=M[0,3] Q[6,3]=M[0,2] Q[6,4]=M[0,1] H=linalg.solve(Q, P) hxy=[H[m] for m in arange(0,int(m),1)] xm=list(arange(1,m+1,1)) plt.figure() plt.title(' h(t)') plt.ylabel('H ') plt.xlabel(' -i ') plt.plot(xm, hxy, 'r') plt.grid(True)
s1=H[0,0]/2 s2=(H[0,0]+H[1,0])/2 s3=(H[1,0]+H[2,0])/2 s4=(H[2,0]+H[3,0])/2 s5=(H[3,0]+H[4,0])/2 s6=(H[4,0]+H[5,0])/2 s7=(H[5,0]+H[6,0])/2 N=zeros([8,1]) N[0,0]=0 N[1,0]=s1 N[2,0]=N[1,0]+s2 N[3,0]=N[2,0]+s3 N[4,0]=N[3,0]+s4 N[5,0]=N[4,0]+s5 N[6,0]=N[5,0]+s6 N[7,0]=N[6,0]+s7 nxy=[N[i,0] for i in arange(0,m,1)] xm=[i for i in arange(0,m,1)] plt.figure() plt.plot(xm, nxy,color='r', linewidth=3, label=' -') var('t C1 C2') u = Function("u")(t) de = Eq(u.diff(t, t) +0.3*u.diff(t) + u, -0.24) print(de) des = dsolve(de,u) eq1=des.rhs.subs(t,0) eq2=des.rhs.diff(t).subs(t,0) seq=solve([eq1,eq2],C1,C2) rez=des.rhs.subs([(C1,seq[C1]),(C2,seq[C2])]) g= lambdify(t, rez, "numpy") t= linspace(0,7,100) plt.title(' ') plt.xlabel(' () ') plt.ylabel('y(t), N') plt.plot(t,g(t),color='b', linewidth=3, label=' ') plt.legend(loc='best') plt.grid(True) plt.show()
import matplotlib.pyplot as plt from sympy import * from numpy import (zeros,arange,ones,matrix,linalg,linspace) " Rx (τ) . " X=[797.17, 797.25, 797.15, 797.23, 797.15, 797.08, 797.05, 797.04, 797.14, 797.14, 797.1, 797.1, 797.11, 797.11, 797.11, 797.11, 797.11, 797.1, 797.1, 797.1, 797.12, 797.12, 797.12, 797.12, 797.12, 797.12, 797.1, 797.08] n=len(X) m=int(n/4) Xsr=sum([w for w in X])/n Dx=sum([(X[i]-Xsr)**2 for i in arange(0,n,1)])/(n-1) Rxm=sum([(X[i]-Xsr)*(X[i+m]-Xsr) for i in arange(0,nm,1)])/((nm)*Dx) def fRxm(m): return sum([(X[i]-Xsr)*(X[i+m]-Xsr) for i in arange(0,nm,1)])/((nm)*Dx) ym=[fRxm(m) for m in arange(0,m+1)] xm=list(arange(0,m+1,1)) M=zeros([1,m+1]) for i in arange(0,m+1,1): M[0,i]=fRxm(i) plt.figure() plt.title(' Rx (τ). ') plt.ylabel('Rx (τ) ') plt.xlabel(' -m ') plt.plot(xm, ym, 'r') plt.grid(True) " Rxy (τ) X Y , " Y=[577.59, 622.61, 602.23, 554.64, 567.67, 635.47, 608.27, 620.82, 561.73, 639.0, 550.1, 609.31, 640.45, 611.92, 579.33, 552.04, 597.73, 553.4, 605.72, 647.94, 602.26, 610.99, 575.95, 638.99, 631.86, 589.89, 608.17, 619.26] n=len(Y) m=int(n/4) Ysr=sum([w for w in Y])/n Dy=sum([(Y[i]-Ysr)**2 for i in arange(0,n,1)])/(n-1) Rxy=sum([(X[i]-Xsr)*(Y[i+m]-Ysr) for i in arange(0,nm,1)])/((nm)*Dx**0.5*Dy**0.5) def fRxy(m): return sum([(X[i]-Xsr)*(Y[i+m]-Ysr) for i in arange(0,nm,1)])/((nm)*Dx**0.5*Dy**0.5) xy=[fRxy(m) for m in arange(0,m+1)] plt.figure() plt.title(' Rxy (τ). ') plt.ylabel('Rxy (τ) ') plt.xlabel(' -m ') plt.plot(xm, xy, 'r') plt.grid(True) """ -.""" P=zeros([m,1]) for i in arange(0,m,1): P[i,0]=fRxy(i) Q=zeros([7,7]) for i in arange(0,7,1): Q[0,i]=M[0,i+1] Q[1,i]=M[0,i] for i in arange(0,6,1): Q[2,i+1]=M[0,i] Q[2,0]=M[0,1] for i in arange(0,5,1): Q[3,i+2]=M[0,i] Q[3,1]=M[0,1] Q[3,0]=M[0,2] for i in arange(0,4,1): Q[4,i+3]=M[0,i] Q[4,0]=M[0,3] Q[4,1]=M[0,2] Q[4,2]=M[0,1] for i in arange(0,3,1): Q[5,i+4]=M[0,i] Q[5,0]=M[0,4] Q[5,1]=M[0,3] Q[5,2]=M[0,2] Q[5,3]=M[0,1] for i in arange(0,2,1): Q[6,i+5]=M[0,i] Q[6,0]=M[0,5] Q[6,1]=M[0,4] Q[6,2]=M[0,3] Q[6,3]=M[0,2] Q[6,4]=M[0,1] H=linalg.solve(Q, P) hxy=[H[m] for m in arange(0,int(m),1)] xm=list(arange(1,m+1,1)) plt.figure() plt.title(' h(t)') plt.ylabel('H ') plt.xlabel(' -i ') plt.plot(xm, hxy, 'r') plt.grid(True) s1=H[0,0]/2 s2=(H[0,0]+H[1,0])/2 s3=(H[1,0]+H[2,0])/2 s4=(H[2,0]+H[3,0])/2 s5=(H[3,0]+H[4,0])/2 s6=(H[4,0]+H[5,0])/2 s7=(H[5,0]+H[6,0])/2 N=zeros([8,1]) N[0,0]=0 N[1,0]=s1 N[2,0]=N[1,0]+s2 N[3,0]=N[2,0]+s3 N[4,0]=N[3,0]+s4 N[5,0]=N[4,0]+s5 N[6,0]=N[5,0]+s6 N[7,0]=N[6,0]+s7 nxy=[N[i,0] for i in arange(0,m,1)] xm=[i for i in arange(0,m,1)] plt.figure() plt.plot(xm, nxy,color='r', linewidth=3, label=' -') var('t C1 C2') u = Function("u")(t) de = Eq(u.diff(t, t) +0.3*u.diff(t) +u, -0.24) print(de) des = dsolve(de,u) eq1=des.rhs.subs(t,0) eq2=des.rhs.diff(t).subs(t,0) seq=solve([eq1,eq2],C1,C2) rez=des.rhs.subs([(C1,seq[C1]),(C2,seq[C2])]) g= lambdify(t, rez, "numpy") t= linspace(0,7,100) plt.title(' ') plt.xlabel(' () ') plt.ylabel('y(t), N') plt.plot(t,g(t),color='b', linewidth=3, label=' ') plt.legend(loc='best') plt.grid(True) plt.show()
Source: https://habr.com/ru/post/341268/
All Articles