For a given generator, the optimal discriminator gives the probability which is almost obvious, I suggest thinking about it for a second.
from IPython.display import clear_output import numpy as np import matplotlib.pyplot as plt %matplotlib inline from keras.layers import Dropout, BatchNormalization, Reshape, Flatten, RepeatVector from keras.layers import Lambda, Dense, Input, Conv2D, MaxPool2D, UpSampling2D, concatenate from keras.layers.advanced_activations import LeakyReLU from keras.models import Model, load_model from keras.datasets import mnist from keras.utils import to_categorical (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test .astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) y_train_cat = to_categorical(y_train).astype(np.float32) y_test_cat = to_categorical(y_test).astype(np.float32)
from keras import backend as K import tensorflow as tf sess = tf.Session() K.set_session(sess)
batch_size = 256 batch_shape = (batch_size, 28, 28, 1) latent_dim = 2 num_classes = 10 dropout_rate = 0.3
def gen_batch(x, y): n_batches = x.shape[0] // batch_size while(True): for i in range(n_batches): yield x[batch_size*i: batch_size*(i+1)], y[batch_size*i: batch_size*(i+1)] idxs = np.random.permutation(y.shape[0]) x = x[idxs] y = y[idxs] train_batches_it = gen_batch(x_train, y_train_cat) test_batches_it = gen_batch(x_test, y_test_cat)
x_ = tf.placeholder(tf.float32, shape=(None, 28, 28, 1), name='image') y_ = tf.placeholder(tf.float32, shape=(None, num_classes), name='labels') z_ = tf.placeholder(tf.float32, shape=(None, latent_dim), name='z') img = Input(tensor=x_) lbl = Input(tensor=y_) z = Input(tensor=z_)
with tf.variable_scope('generator'): x = concatenate([z, lbl]) x = Dense(7*7*64, activation='relu')(x) x = Dropout(dropout_rate)(x) x = Reshape((7, 7, 64))(x) x = UpSampling2D(size=(2, 2))(x) x = Conv2D(64, kernel_size=(5, 5), activation='relu', padding='same')(x) x = Dropout(dropout_rate)(x) x = Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same')(x) x = Dropout(dropout_rate)(x) x = UpSampling2D(size=(2, 2))(x) generated = Conv2D(1, kernel_size=(5, 5), activation='sigmoid', padding='same')(x) generator = Model([z, lbl], generated, name='generator')
def add_units_to_conv2d(conv2, units): dim1 = int(conv2.shape[1]) dim2 = int(conv2.shape[2]) dimc = int(units.shape[1]) repeat_n = dim1*dim2 units_repeat = RepeatVector(repeat_n)(lbl) units_repeat = Reshape((dim1, dim2, dimc))(units_repeat) return concatenate([conv2, units_repeat]) with tf.variable_scope('discrim'): x = Conv2D(128, kernel_size=(7, 7), strides=(2, 2), padding='same')(img) x = add_units_to_conv2d(x, lbl) x = LeakyReLU()(x) x = Dropout(dropout_rate)(x) x = MaxPool2D((2, 2), padding='same')(x) l = Conv2D(128, kernel_size=(3, 3), padding='same')(x) x = LeakyReLU()(l) x = Dropout(dropout_rate)(x) h = Flatten()(x) d = Dense(1, activation='sigmoid')(h) discrim = Model([img, lbl], d, name='Discriminator')
generated_z = generator([z, lbl]) discr_img = discrim([img, lbl]) discr_gen_z = discrim([generated_z, lbl]) gan_model = Model([z, lbl], discr_gen_z, name='GAN') gan = gan_model([z, lbl])
log_dis_img = tf.reduce_mean(-tf.log(discr_img + 1e-10)) log_dis_gen_z = tf.reduce_mean(-tf.log(1. - discr_gen_z + 1e-10)) L_gen = -log_dis_gen_z L_dis = 0.5*(log_dis_gen_z + log_dis_img)
optimizer_gen = tf.train.RMSPropOptimizer(0.0003) optimizer_dis = tf.train.RMSPropOptimizer(0.0001) # () generator_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "generator") discrim_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "discrim") step_gen = optimizer_gen.minimize(L_gen, var_list=generator_vars) step_dis = optimizer_dis.minimize(L_dis, var_list=discrim_vars)
sess.run(tf.global_variables_initializer())
# def step(image, label, zp): l_dis, _ = sess.run([L_dis, step_gen], feed_dict={z:zp, lbl:label, img:image, K.learning_phase():1}) return l_dis # def step_d(image, label, zp): l_dis, _ = sess.run([L_dis, step_dis], feed_dict={z:zp, lbl:label, img:image, K.learning_phase():1}) return l_dis
# , , figs = [[] for x in range(num_classes)] periods = [] save_periods = list(range(100)) + list(range(100, 1000, 10)) n = 15 # 15x15 from scipy.stats import norm # N(0, I), , , grid_x = norm.ppf(np.linspace(0.05, 0.95, n)) grid_y = norm.ppf(np.linspace(0.05, 0.95, n)) grid_y = norm.ppf(np.linspace(0.05, 0.95, n)) def draw_manifold(label, show=True): # figure = np.zeros((28 * n, 28 * n)) input_lbl = np.zeros((1, 10)) input_lbl[0, label] = 1. for i, yi in enumerate(grid_x): for j, xi in enumerate(grid_y): z_sample = np.zeros((1, latent_dim)) z_sample[:, :2] = np.array([[xi, yi]]) x_generated = sess.run(generated_z, feed_dict={z:z_sample, lbl:input_lbl, K.learning_phase():0}) digit = x_generated[0].squeeze() figure[i * 28: (i + 1) * 28, j * 28: (j + 1) * 28] = digit if show: # plt.figure(figsize=(10, 10)) plt.imshow(figure, cmap='Greys') plt.grid(False) ax = plt.gca() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() return figure n_compare = 10 def on_n_period(period): clear_output() # output # y draw_lbl = np.random.randint(0, num_classes) print(draw_lbl) for label in range(num_classes): figs[label].append(draw_manifold(label, show=label==draw_lbl)) periods.append(period)
batches_per_period = 20 # k_step = 5 # , for i in range(5000): print('.', end='') # b0, b1 = next(train_batches_it) zp = np.random.randn(batch_size, latent_dim) # for j in range(k_step): l_d = step_d(b0, b1, zp) b0, b1 = next(train_batches_it) zp = np.random.randn(batch_size, latent_dim) if l_d < 1.0: break # for j in range(k_step): l_d = step(b0, b1, zp) if l_d > 0.4: break b0, b1 = next(train_batches_it) zp = np.random.randn(batch_size, latent_dim) # if not i % batches_per_period: period = i // batches_per_period if period in save_periods: on_n_period(period) print(l_d)
from matplotlib.animation import FuncAnimation from matplotlib import cm import matplotlib def make_2d_figs_gif(figs, periods, c, fname, fig, batches_per_period): norm = matplotlib.colors.Normalize(vmin=0, vmax=1, clip=False) im = plt.imshow(np.zeros((28,28)), cmap='Greys', norm=norm) plt.grid(None) plt.title("Label: {}\nBatch: {}".format(c, 0)) def update(i): im.set_array(figs[i]) im.axes.set_title("Label: {}\nBatch: {}".format(c, periods[i]*batches_per_period)) im.axes.get_xaxis().set_visible(False) im.axes.get_yaxis().set_visible(False) return im anim = FuncAnimation(fig, update, frames=range(len(figs)), interval=100) anim.save(fname, dpi=80, writer='imagemagick') for label in range(num_classes): make_2d_figs_gif(figs[label], periods, label, "./figs4_5/manifold_{}.gif".format(label), plt.figure(figsize=(10,10)), batches_per_period)
Source: https://habr.com/ru/post/332000/
All Articles