%%time # transactions = pd.read_csv('.//JN//SBSJ//transactions.csv') all_cuses = transactions.customer_id.unique() # mcc = pd.read_csv('.//JN//SBSJ//tr_mcc_codes.csv', sep=';') all_mcc = mcc.mcc_code.unique() # transactions = transactions[transactions.amount < 0].copy() transactions['day'] = transactions.tr_day.apply(lambda dt: dt.split()[0]).astype(int) transactions.day += 29 - transactions['day'].max()%30 # transactions['month_num'] = (transactions.day) // 30 train_transactions = transactions[transactions.month_num < 15] # ( ) grid = list(product(*[all_cuses, all_mcc, range(11, 15)])) train_grid = pd.DataFrame(grid, columns = ['customer_id', 'mcc_code', 'month_num']) train = pd.merge(train_grid, train_transactions.groupby(['month_num', 'customer_id', 'mcc_code'])[['amount']].sum().reset_index(), how='left').fillna(0) # for month_shift in range(1, 3): train_shift = train.copy() train_shift['month_num'] = train_shift['month_num'] + month_shift train_shift = train_shift.rename(columns={"amount" : 'amount_{0}'.format(month_shift)}) train_shift = train_shift[['month_num', 'customer_id', 'mcc_code', 'amount_{0}'.format(month_shift)]] train = pd.merge(train, train_shift, on=['month_num', 'customer_id', 'mcc_code'], how='left').fillna(0) train['year_num'] = (train.month_num) // 12 # hashier trick hasher = FeatureHasher(n_features=6, input_type='string') train_sparse = \ hasher.fit_transform(train[['year_num', 'month_num', 'customer_id', 'mcc_code']].astype(str).as_matrix()) train_sparse2 = sparse.hstack([train_sparse, np.log(np.abs(train[['amount_1', 'amount_2']]) + 1).as_matrix(),]) # d = list(train_sparse2.toarray()) # clf = LinearRegression() clf.fit(d, np.log(np.abs(train['amount']) + 1)) # print('Coefficients: \n', clf.coef_) print('Intercept: \n', clf.intercept_) print("\nRMSLE: ") np.sqrt(mse(np.log(np.abs(train['amount']) + 1),clf.predict(d)))
[Serializable] public class Client { private Int32 name; private Int16 period; private Int16 year; private Int16 mcc; private double amount; private double amount1; private double amount2; // get/set ...
// List<Client> lTransGrouped = lClientsTrans.AsParallel() .Where(row => row.getAmount() < 0) .GroupBy(row => new { month = (row.getPeriod() + 29 - Convert.ToInt16(maxNumDay) % 30) / 30, // mcc = row.getMcc(), cid = row.getName() }) .Select(grp => new Client( grp.Key.cid, Convert.ToInt16(grp.Key.month), grp.Key.mcc, Math.Log(Math.Abs(grp.Sum(r => r.getAmount())) + 1))).ToList(); lClientsTrans = null;
public static List<Client> addPeriodMcc(List<Client> lTransGrouped, Int16 maxNumMon) { List<Client> lMcc = new List<Client>(); string fnameMcc = @"j:\hadoop\Contest\Contest\tr_mcc_codes.csv"; // mcc_code CsvReader csvMccReader = new CsvReader(new StreamReader(fnameMcc), true, ';'); // while (csvMccReader.ReadNextRecord()) { Int16 mcc = Convert.ToInt16(csvMccReader[0]); lMcc.Add(new Client(0, 0, mcc, 0)); } // mcc List<Client> lNewMcc = new List<Client>(); // ID var lTransCID = lTransGrouped.AsParallel().Select(a => a.getName()).Distinct(); Console.WriteLine("Unique CID: " + lTransCID.Count()); // int capacity = lTransGrouped.Count() * 6; // , var filter = new Filter<string>(capacity); // // foreach (var i in lTransGrouped) filter.Add(i.getName().ToString() + i.getPeriod() + i.getMcc()); // , foreach (var cid in lTransCID) for (Int16 m = 0; m <= maxNumMon; m++) foreach (var mcc in lMcc) if (filter.Contains(cid.ToString() + m.ToString() + mcc.getMcc().ToString()) != true) lNewMcc.Add(new Client(cid, m, mcc.getMcc(), 0)); lTransCID = lMcc = null; Console.WriteLine("Count lNewMcc: " + lNewMcc.Count); Console.WriteLine("Count lTransGrouped: " + lTransGrouped.Count); // List<Client> lTransFull = lNewMcc.Union(lTransGrouped).ToList(); Console.WriteLine("Count lTransFull: " + lTransFull.Count); lTransGrouped = lNewMcc = null; return lTransFull; }
public static List<Client> addAmounts(List<Client> lTransFull) { List<Client> lTransFullA2; // lTransFullA2 = lTransFull.OrderBy(a => a.getName()) .ThenBy(a => a.getMcc()) .ThenBy(a => a.getYear()) .ThenBy(a => a.getPeriod()).ToList(); int name = 0; int month = 0; int year = 0; int mcc = 0; int i = 0; foreach (var l in lTransFullA2) { name = l.getName(); mcc = l.getMcc(); year = l.getYear(); month = l.getPeriod(); // if (i > 0 && name == lTransFullA2[i - 1].getName() && mcc == lTransFullA2[i - 1].getMcc() && year == lTransFullA2[i - 1].getYear() && month == lTransFullA2[i - 1].getPeriod() + 1) { l.setAmount1(lTransFullA2[i - 1].getAmount()); } // if (i > 1 && name == lTransFullA2[i - 2].getName() && mcc == lTransFullA2[i - 2].getMcc() && year == lTransFullA2[i - 2].getYear() && month == lTransFullA2[i - 2].getPeriod() + 2) { l.setAmount2(lTransFullA2[i - 2].getAmount()); } i++; } return lTransFullA2; }
int n_features = 6; // Extreme.Mathematics.LinearAlgebra.SparseVector<double> v = Vector.CreateSparse<double>(lTransFullA2.Count); // (hash + ) md = Matrix.Create<double>(lTransFullA2.Count, n_features + 2); // Hashing trick Parallel.For(0, lTransFullA2.Count(), i => hashing_vectorizer(lTransFullA2[i], i, n_features)); for (int i = 0; i < lTransFullA2.Count; i++) { md[i, n_features] = lTransFullA2[i].getAmount1(); md[i, n_features + 1] = lTransFullA2[i].getAmount2(); v.AddAt(i, lTransFullA2[i].getAmount()); } lTransFullA2 = null; GC.Collect(2, GCCollectionMode.Forced); var model = new LinearRegressionModel(v, md); // model.MaxDegreeOfParallelism = 8; model.Compute(); // Console.WriteLine(model.Summarize()); // GC.Collect(2, GCCollectionMode.Forced);
public static void hashing_vectorizer(Client f, int i, int n) { int[] x = new int[n]; string s = f.getYear().ToString(); // int idx = getIndx(s, n); x[idx] += calcBit(s); md[i,idx] = x[idx]; s = f.getPeriod().ToString(); idx = getIndx(s, n); x[idx] += calcBit(s); md[i, idx] = x[idx]; s = f.getName().ToString(); idx = getIndx(s, n); x[idx] += calcBit(s); md[i, idx] = x[idx]; s = f.getMcc().ToString(); idx = getIndx(s, n); x[idx] += calcBit(s); md[i, idx] = x[idx]; } // public static int calcBit(string s) { byte b = 0; b = Convert.ToByte(s[0]); for (int i = 1; i < s.Count(); i++) b ^= Convert.ToByte(s[0]); bool result = true; while (b >= 1) { result ^= (b & 0x01) != 0; b = Convert.ToByte(b >> 1); } if (result) return -1; else return 1; } public static int getIndx(string str, int n) { Encoding encoding = new UTF8Encoding(); byte[] input = encoding.GetBytes(str); uint h = MurMurHash3.Hash(input); return Convert.ToInt32(h % n); }
Source: https://habr.com/ru/post/318484/
All Articles