import numpy as np import cvxpy as cvx # x = cvx.Variable(2) A = np.array([[1, 1], [1, -1], [-1, 1], [-1, -1]]) b = np.array([8, 2, 12, 6]) c = np.array([7, -3]) # constraints = [A * x <= b] # obj = cvx.Minimize(c * x) # prob = cvx.Problem(obj, constraints) prob.solve() print(prob.status) # optimal print(prob.value) # -71.999999805 print(x.value) # [[-8.99999997] [ 3.00000002]]
prob.solve(solver = "GLPK") print(prob.status) # optimal print(prob.value) # -72.0 print(x.value) # [[-9.] [ 3.]]
installed_solvers()
function. # constraints = [cvx.abs(x[0] + 2) + cvx.abs(x[1] - 3) <= 7] # obj = cvx.Minimize(c * x) # prob = cvx.Problem(obj, constraints) prob.solve(solver = "GLPK") print(prob.status) # optimal print(prob.value) # -72.0 print(x.value) # [[-9.] [ 3.]]
# obj = cvx.Minimize(cvx.norm(A * x - b)) # # prob = cvx.Problem(obj) prob.solve() print(prob.status) # optimal print(prob.value) # 13.9999999869 print(x.value) # [[-2.] [ 3.]]
A = np.array([[1, 1], [1, -1], [-1, 1]]) b = np.array([8, 2, 12]) c = np.array([7, -3]) # constraints = [A * x <= b] # obj = cvx.Minimize(c * x) # prob = cvx.Problem(obj, constraints) prob.solve() print(prob.status) # unbounded print(prob.value) # -inf print(x.value) # None
A = np.array([[1, 1], [1, -1], [-1, 1], [-1, -1]]) b = np.array([-6, -12, -2, -8]) # constraints = [A * x <= b] # obj = cvx.Minimize(c * x) # prob = cvx.Problem(obj, constraints) prob.solve() print(prob.status) # infeasible print(prob.value) # inf print(x.value) # None
Source: https://habr.com/ru/post/315236/
All Articles