#  R    JSON β    list
decl_raw<-rjson::fromJSON(file="feed.json")
# dataframe   ,  - 
decl_df<-data.frame(matrix(NA,nrow=length(decl_raw), ncol = 0))
#
# :     
#
# 
  decl_df$general.post.region<-ββ
  decl_df$general.post.office<-ββ
  decl_df$general.post.post<-ββ
#   
for (i in 1:length(decl_raw))
{
  #
  #  
  #
 
  #,    
  decl_df$general.post.region[i]<-decl_raw[[i]]$general$post$region
  #
  decl_df$general.post.office[i]<-decl_raw[[i]]$general$post$office
  #
  decl_df$general.post.post[i]<-decl_raw[[i]]$general$post$post
}
#
#  :  -      
#
# 
decl_df$vehicle35<-0
decl_df$vehicle36<-0
decl_df$vehicle37<-0
decl_df$vehicle38<-0
decl_df$vehicle39<-0
decl_df$vehicle40<-0
decl_df$vehicle41<-0
decl_df$vehicle42<-0
decl_df$vehicle43<-0
decl_df$vehicle44<-0
#   
for (i in 1:length(decl_raw))
{ 
  #
  #-      (.35-44)
  #
  
  for (unit in 35:44)
  {
    j = 0
    col_name<-paste0("vehicle", unit)
    raw_col_name<-paste0("decl_raw[[",i,"]]$vehicle$`",unit,"`")
    
    if (length(eval(parse(text=raw_col_name)))!=0)  
    {
      for (k in 1:length(eval(parse(text=raw_col_name))))
      {
        if (length(eval(parse(text=paste0("decl_raw[[",i,"]]$vehicle$`",unit,"`[[",k, "]]$brand"))))!=0 && eval(parse(text=paste0("decl_raw[[",i,"]]$vehicle$`",unit,"`[[",k, "]]$brand")))!="")
        {j = j+1}
      }
    }
    decl_df[i, grep(col_name, colnames(decl_df))]<-j
  }
}  
#     
decl_df_all$vehicle_names<-""
for (i in 1:length(decl_raw))
{ 
  
  vname<-""
  
  for (unit in 35:44)
  {
    col_name<-paste0("vehicle", unit)
    raw_col_name<-paste0("decl_raw[[",i,"]]$vehicle$`",unit,"`")
    
    if (length(eval(parse(text=raw_col_name)))!=0)  
    {
      for (k in 1:length(eval(parse(text=raw_col_name))))
      {
        if (length(eval(parse(text=paste0("decl_raw[[",i,"]]$vehicle$`",unit,"`[[",k, "]]$brand"))))!=0 && eval(parse(text=paste0("decl_raw[[",i,"]]$vehicle$`",unit,"`[[",k, "]]$brand")))!="")
        {
          vname=paste(vname,eval(parse(text=paste0("decl_raw[[",i,"]]$vehicle$`",unit,"`[[",k, "]]$brand"))), sep=";")
        }
      }
    }
  }
  decl_df$vehicle_names[i]<-vname
}
#decl_df β  dataframe     JSON 
#           
#  ,     , 
#     
decl_df$income.own<-decl_df$income.own.6+decl_df$income.own.7+decl_df$income.own.8+
decl_df$income.own.9+decl_df$income.own.10+decl_df$income.own.11+
decl_df$income.own.12+decl_df$income.own.13+decl_df$income.own.14+
decl_df$income.own.15+decl_df$income.own.16+decl_df$income.own.17+
decl_df$income.own.18+decl_df$income.own.19+decl_df$income.own.20+
decl_df$income.own.21
#    ,      ,      
#         
for (i in 1:nrow(decl_df))
{
  if (decl_df$income.own[i]==0 && decl_df$income.own.5[i]>0)  
  {decl_df$income.own[i]<-decl_df$income.own.5[i]}
}
#    
decl_df$income.family<-decl_df$income.family.6+decl_df$income.family.7+
decl_df$income.family.8+decl_df$income.family.9+decl_df$income.family.10+
decl_df$income.family.11+decl_df$income.family.12+
decl_df$income.family.13+decl_df$income.family.14+
decl_df$income.family.15+decl_df$income.family.16+
decl_df$income.family.17+decl_df$income.family.18+
decl_df$income.family.19+decl_df$income.family.20+
as.numeric(gsub(",", ".", decl_df$income.family.22))
for (i in 1:nrow(decl_df))
{
  if (decl_df$income.family[i]==0 && decl_df$income.family.5[i]>0)  
  {decl_df$income.family[i]<-decl_df$income.family.5[i]}
}
#     
decl_df$income_per_member<-rowSums(cbind(decl_df$income.own,decl_df$income.family), na.rm=TRUE)
decl_df$income_per_member<-decl_df$income_per_member/decl_df$number_of_family_members_incl_decl
#   ..
decl_df$income_per_member_ths<-decl_df$income_per_member/1000
quantile(decl_df$income_per_member_ths, probs=seq(0,1,0.1))
qplot(data=decl_df, x=office_g, y = income_per_member_ths, 
      geom="boxplot",
      xlab="",
      ylab="   , ..",
      main=" ")

qplot(data=decl_df[decl_df$income_per_member_ths<1000,], 
      x=office_g, y = income_per_member_ths, geom="boxplot",
      xlab="",
      ylab="   , ..",
      main="  1 ..")

# dataframe   
decl_family<-decl_df[decl_df$number_of_family_members_incl_decl>1,]
qplot(data=decl_family, y=income.own/1000, x=income.family/1000,
      xlim=c(0,800000), ylim=c(0,800000),
      xlab=" , ..", ylab=" , ..")

nrow(decl_family[decl_family$income.own<1000000 & decl_family$income.family<1000000,])/nrow(decl_family)
qplot(data=decl_family, y=income.own/1000, x=income.family/1000,
      xlim=c(0,1000), ylim=c(0,1000),
      xlab=" , ..", ylab=" , ..",
      main="  1 ..")

# -  4 :
#1.   
#2.   75%  
#3.      (  75%  150%  )
#4.      1,5   
decl_family$family.own.income.ratio<-""
for (i in 1:nrow(decl_family))
{
  if (decl_family$income.family[i]==0) 
  {decl_family$family.own.income.ratio[i]<-"1.   "}  
  
  else
  {
    if (decl_family$income.family[i]<=0.75*decl_family$income.own[i]) 
    {decl_family$family.own.income.ratio[i]<-"2.   (<0.75x)"}
    
    else
    {
      if (decl_family$income.family[i]<=1.5*decl_family$income.own[i]) 
      {
        decl_family$family.own.income.ratio[i]<-"3.   (0.75-1.5)"
      }
      if (decl_family$income.family[i]>1.5*decl_family$income.own[i]) 
      {
        decl_family$family.own.income.ratio[i]<-"4.  , >1.5x"
      }
    }
  }
}
decl_family$family.own.income.ratio<-as.factor(decl_family$family.own.income.ratio)
#   %   
y<-as.data.frame(100*prop.table(table(decl_family$family.own.income.ratio,decl_family$office_g), margin=2))
# 
ggplot(y, aes(x = Var2, y = Freq, fill = Var1)) +
  geom_bar(stat="identity")+
  ylab("%") +
  xlab("")+
  theme(text = element_text(size=14), legend.title=element_blank(),axis.text.x = element_text(angle=90, size=12,vjust=1,hjust=1))+
  geom_text(aes(label = round(Freq,0),ymax=100),size=4,vjust=1.5,position="stack")+
  scale_fill_brewer()

#   (  )
decl_df$income.own.and.family<-decl_df$income.own+decl_df$income.family
#      (.45-53 )
decl_df$banks<-decl_df$banks45+decl_df$banks47+decl_df$banks49+
              decl_df$banks51+decl_df$banks52+decl_df$banks53
#     
decl_df$banks.income.ratio<-decl_df$banks/(decl_df$income.own.and.family+1)
#     
#     ,    
# 5    ,    
decl_df$susp1<-0
for (i in 1:nrow(decl_df))
{
  if (decl_df$banks[i]>5*decl_df$income.own.and.family[i])
  {decl_df$susp1[i]<-1}
}
decl_df$susp2<-0
for (i in 1:nrow(decl_df))
{
  if (decl_df$income.own.and.family[i]==0)
  {decl_df$susp2[i]<-1}
}
#     
decl_df$estate.own<-decl_df$estate24+decl_df$estate25+
                    decl_df$estate26+decl_df$estate27+decl_df$estate28
#     
decl_df$estate.family<-decl_df$estate30+decl_df$estate31+
                    decl_df$estate32+decl_df$estate33+decl_df$estate34
#    25%   
x<-quantile(decl_df[decl_df$number_of_family_members>0,]$income.family, probs=seq(0,1,0.25))[2]
#       
y<-mean(decl_df[decl_df$number_of_family_members>0,]$estate.family)
#            
#  
decl_df$susp3<-0
for (i in 1:nrow(decl_df))
{
  if (decl_df$estate.family[i]>y & decl_df$estate.family[i]>decl_df$estate.own[i])
  {
    #        ,    
    if (decl_df$income.family[i]<x)
    {decl_df$susp3[i]<-2}
    else
    {decl_df$susp3[i]<-1}
  }
  
}
# -  (  )
decl_df$income.from.abroad<-decl_df$income.own.21+as.double(decl_df$income.family.22)
decl_df$susp4<-0
for (i in 1:nrow(decl_df))
{
#  -  ,     β    
if (decl_df$income.from.abroad[i]> 
decl_df$income.own.and.family[i]-decl_df$income.from.abroad[i])
  {decl_df$susp4[i]<-1}
}
#  (  )  
decl_df$vehicles<-decl_df$vehicle35+decl_df$vehicle36+
                  decl_df$vehicle40+decl_df$vehicle41
decl_df$susp5<-0
for (i in 1:nrow(decl_df))
{
 if (decl_df$vehicles[i]>2 &  decl_df$estate.own[i]==0 & decl_df$estate.family[i]==0)
 {decl_df$susp5[i]<-1}
}
#   
luxury_cars<-c('Acura',	'Lexus',	'Cadillac',	'Alfa Romeo Giulia',	'Jaguar',	'Volvo S60',	'Infinity',	'Saab 9-3',	'BMW 3',	'Audi A4',	'Mercedes-Benz C',	'Volvo S80',	'Audi A6',	'Audi A7',	'Mercedes-Benz E',	'Saab 9-5',	'Maserati',	'BMW 5',	'BMW 7',	'Audi A8',	'Mercedes-Benz S',	'Porsche',	'Volkswagen Phaeton',	'Rolls-Royce',	'Bentley',	'Ferrari',	'Lamborghini',	'Mercedes-Benz GL',	'Hummer',	'Land Rover')
for (j in (1:nrow(decl_df)))
{
  decl_df$susp5.1[j]<-0
  for (i in (1:length(luxury_cars)))
  {
    #       
    if (grepl(luxury_cars[i], decl_df$vehicle_names[j], 
                  ignore.case=TRUE)==TRUE)
        {
            # -  
            decl_df$susp5.1[j]<-decl_df$susp5.1[j]+
            length(gregexpr(luxury_cars[i], decl_df$vehicle_names[j],ignore.case=TRUE)[[1]])
        }
  }
}
decl_df$susp5.2<-0
#    -   
for (i in (1:nrow(decl_df))) {if (decl_df$susp5.1[i]>0) decl_df$susp5.2[i]<-1}
#    -   
for (i in (1:nrow(decl_df))) {if (decl_df$vehicles[i]==1) decl_df$susp5.2[i]<-0}
#    0
decl_df$familyPE.own.income.ratio<-0
# ,     ,    
#         
decl_df[decl_df$income.own.and.family>0,]$familyPE.own.income.ratio<-
decl_df[decl_df$income.own.and.family>0,]$income.family.17/decl_df[decl_df$income.own.and.family>0,]$income.own.and.family
#           .   ,         
x<-mean(decl_df[decl_df$income.family.17>0,]$familyPE.own.income.ratio)
decl_df$susp6<-0
#    β   
for (i in 1:nrow(decl_df))
{
  if (decl_df$familyPE.own.income.ratio[i]>x)
  {decl_df$susp6[i]<-1}
}
decl_df$suspicious<-decl_df$susp1+decl_df$susp2+
                    decl_df$susp3+decl_df$susp4+decl_df$susp5+decl_df$susp5.2+
                    decl_df$susp6+decl_df$hata_own+decl_df$hata_family*0.5

Source: https://habr.com/ru/post/271773/
All Articles