import numpy as np import pylab import profile # n_iter = 5000 # dim = 5 # dim_o = 2 # def calcF( t ): res = np.identity( dim ) _t = 1.0 for i in range( 1, dim ): _t *= t / i for j in range( 0, dim-i ): res[ j ][ i+j ] = _t return res # def calcFG( t ): F = np.identity( dim ) G = np.zeros( ( dim, 1 ) ) _t = 1.0 for i in range( 0, dim ): for j in range( 0, dim-i ): F[ j ][ i+j ] = _t if i <= dim_o: G[ dim_o - i ] = _t _t *= t / ( i+1 ) return F, G # xtruth = np.zeros( ( dim, 1 ) ) xtruth[0][0] = 15.3 xtruth[1][0] = 8.7 xtruth[2][0] = -0.3 xtruth[3][0] = 0.3 xtruth[4][0] = -1.0 # H = np.zeros( ( dim_o, dim ) ) for i in range( dim_o ): H[i][i] = 1.0 H_t = H.transpose() # R = 1e-10 * np.identity( dim_o ) # , t = 0.1 * np.arange( n_iter ) + np.random.normal( 0.0, 0.02, size=( n_iter, ) ) # D = 13.3 * 0.05 / 7000 * 2 / 60.0 # , x = np.zeros( ( dim, 1 ) ) # dx = np.zeros( ( dim_o, n_iter ) ) # P = 10.0 * np.identity( dim ) # z = np.zeros( ( n_iter, dim_o, 1 ) ) for i in range( 0, n_iter ): z[i] = H.dot( calcF( t[ i ] ) ).dot( xtruth ) # F D^2*G*G^T F = np.zeros( ( n_iter, dim, dim ) ) GGt = np.zeros( ( n_iter, dim, dim ) ) for i in range( 1, n_iter ): dt = t[ i ] - t[ i-1 ] F[i], G = calcFG( dt ) GGt[i] = D*D * G.dot( G.transpose() ) # def calc(): global t, x, P, D, z, H, R, dx for i in range( 1, n_iter ): xpred = F[i].dot( x ) Ppred = F[i].dot( P ).dot( F[i].transpose() ) + GGt[i] y = z[i] - H.dot( xpred ) S = H.dot( Ppred ).dot( H_t ) + R K = Ppred.dot( H_t ).dot( np.linalg.inv( S ) ) x = xpred + K.dot( y ) P = ( np.identity( dim ) - K.dot( H ) ).dot( Ppred ) # dx[0][i] = y[0][0] / x[0][0] dx[1][i] = y[1][0] / x[1][0] profile.run( 'calc()' ) # pylab.figure() pylab.plot( t, dx[0], label='x' ) pylab.plot( t, dx[1], label='v' ) pylab.legend() pylab.show()
Source: https://habr.com/ru/post/264895/
All Articles