📜 ⬆️ ⬇️

Top 100+ Wolfram | Alpha Sine Functions, or Wolfram | Alpha Overview of Mathematical Features and Syntax


Translation of post by Michael Trott and Eric W. Weisstein "by Michael Trott & Eric W. Weisstein
The Top 100+ Sines of Wolfram | Alpha ", significantly expanding the issues raised by the authors.
Download the translation in the form of a Mathematica document that contains all the code used in the article here (archive, ~ 12 MB).

The Wolfram | Alpha service can perform a huge number of various calculations and mathematical calculations are one of its narrow specialties. In fact, using the power of Mathematica's computational capabilities, which created Wolfram | Alpha, Wolfram | Alpha can solve a wide range of tasks related to mathematical functions, ranging from the simplest to the devilishly complex.

To clarify what we mean by “a large range of tasks” (about which we really think so), let us take as an example such an unassuming mathematical function as sine. Below, we have provided a list that reveals 93 possibilities that Wolfram | Alpha can do with a sine, but in the end we added a number of bonus features that we couldn’t resist.
')
Let's start by simply entering a request sin (x) into Wolfram | Alpha, i.e., just the sine function of the argument x, as it is. The following is what Wolfram | Alpha will give us as a result for this request:

Top-100-sines-of-Wolfram-Alpha_1.png

For those who know what real numbers are, most of the above results refer to the actual values ​​of the argument x. On the other hand, if you use a different kind of argument for the sine function, that is, enter a query, say, sin (z) or sin (x + iy) , then Wolfram | Alpha will assume that you want to work in the field of complex numbers ( complex variables) and will give you a different set of graphs and results, as shown in the figure below:

Top-100-sines-of-Wolfram-Alpha_2.png

Of course, you can ask Wolfram | Alpha to calculate each of the above calculation results separately, for example,

• The global maximum of the sin (x) function .

Wolfram | Alpha : global maxima sin (x) query

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_3.png

Top-100-sines-of-Wolfram-Alpha_4.png

You can also build a lot of graphs by specifying the corresponding queries:

• Build sin (x), sin (2x), sin (3x) plots

Wolfram | Alpha Query : Plot sin (x), sin (2x), sin (3x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_5.png

Top-100-sines-of-Wolfram-Alpha_6.png

• Build charts sin (x), sin (sin (x)), sin (sin (sin (x))), sin (sin (sin (sin (x))), sin (sin (sin (sin (sin) (x)))))

Request Wolfram | Alpha : Plot sin (x), sin (sin (x)), sin (sin (sin (x))), sin (sin (sin (sin (x))), sin (sin (sin (sin (sin (x)))))

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_7.png

Top-100-sines-of-Wolfram-Alpha_8.png

• Graph of isolines of the surface sin (x / | y | - y / | x |) at x = -π to π and y = -π to π

Wolfram | Alpha query : Contourplot sin (x / | y | - y / | x |) from x = -pi to pi and y = -pi to pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_9.png

Top-100-sines-of-Wolfram-Alpha_10.png

• Surface graph sin (x - y) / sin (x + y) with x = -2π to 2π and y = -2π to 2π

Wolfram | Alpha query : Plot3d sin (x - y) / sin (x + y) from x = -2pi to 2pi and y = -2pi to 2pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_11.png

Top-100-sines-of-Wolfram-Alpha_12.png

• Polar plot r = 1 + sin (100 θ)

Wolfram | Alpha query : Polar plot r = 1 + sin (100 theta)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_13.png

Top-100-sines-of-Wolfram-Alpha_14.png

The result of the last query received in Wolfram | Alpha is:

Top-100-sines-of-Wolfram-Alpha_15.png

You can also easily build more complex expressions depending on the sine function, for example:

• Graph of the function {(1 / {1 / sin (x)}} , where {y} is the fractional part of the number y.

Wolfram | Alpha : Plot frac request (1 / frac (1 / sin (x)))

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_16.png

Top-100-sines-of-Wolfram-Alpha_17.png

• Graph of the function sin (x!)! at x = -3 to 3

Request Wolfram | Alpha : Plot sin (x!)! from x = -3 to 3

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_18.png

Top-100-sines-of-Wolfram-Alpha_19.png

• Graphically represent the terms of the sequence 1, sin (1), sin (sin (1)), ... (total 101 members)

Request Wolfram | Alpha : Plot nestlist (sin, 1., 100)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_20.png

Top-100-sines-of-Wolfram-Alpha_21.png

• Graph of a parametrically given curve x = max (sin (t), cos (pi t)), y = max (cos (t), sin (pi t))} t = 0 to 100

Request to Wolfram | Alpha : Parametric plot {max (sin (t), cos (pi t)), max (cos (t), sin (pi t))} from t = 0 to 100

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_22.png

Top-100-sines-of-Wolfram-Alpha_23.png

• Graphs of the surface of the real and imaginary parts of the function sin (sin (x + iy)) with x = -π to π and y = -π to π

Request Wolfram | Alpha : Plot3d sin (sin (x + iy)) from x = -pi to pi and y = -pi to pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_24.png

Top-100-sines-of-Wolfram-Alpha_25.png

• Polar graph of the function r = min (sin (x), sin (sqrt (2) x), sin (sqrt (3) x), sin (sqrt (5) x)) with x = 0 to 100 π

Wolfram | Alpha query : Polar plot min (sin (x), sin (sqrt (2) x), sin (sqrt (3) x), sin (sqrt (5) x)) from x = 0 to 100 pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_26.png

Top-100-sines-of-Wolfram-Alpha_27.png

• Polar graph of the function r = exp (sin (theta)) - 2 cos (4 theta) + sin ^ 5 (theta / 12 - pi / 24)

Request to Wolfram | Alpha : Polar plot r = exp (sin (theta)) - 2 cos (4 theta) + sin ^ 5 (theta / 12 - pi / 24)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_28.png

Top-100-sines-of-Wolfram-Alpha_29.png

• Graph of a three-dimensional parametrically given surface (of a torus) {sin (s + pi / 2) + sin (s + pi / 2) sin (t + pi / 2) / 2, sin (s) + sin (s) sin (t + pi / 2) / 2, sin (t) / 2} with s = 0 to 2π and t = 0 to 2π

Wolfram | Alpha query : Parametric plot3D {sin (s + pi / 2) + sin (s + pi / 2) sin (t + pi / 2) / 2, sin (s) + sin (s) sin (t + pi / 2) / 2, sin (t) / 2} from s = 0 to 2pi and t = 0 to 2pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_30.png

Top-100-sines-of-Wolfram-Alpha_31.png

You can also use Mathematica syntax to specify many expressions and process them:

• Graph of flux density of some vector quantity {Re (sin (x + iy)), Im (Sin (x + iy))}

Wolfram | Alpha query : StreamDensityPlot [{Re [Sin [x + I y]], Im [Sin [x + I y]]}, {x, -Pi, Pi}, {y, -Pi, Pi}, ColorFunction -> “ThermometerColors”]

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_32.png

Top-100-sines-of-Wolfram-Alpha_33.png

• Graph of the family of functions sin (kx) with k = 0,1,2,3, ..., 30 magenta

Wolfram | Alpha query : Plot [Table [Sin [kx], {k, 0, 30}], {x, 0, Pi / 2}] in purple

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_34.png

Top-100-sines-of-Wolfram-Alpha_35.png

We can calculate some specific values ​​of the sine function, say

• sin (π / 88)

Wolfram | Alpha : sin request (pi / 88)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_36.png

Top-100-sines-of-Wolfram-Alpha_37.png

Or, on the contrary, enter the number 0.0356923338389804557600 ... and see the result:

Top-100-sines-of-Wolfram-Alpha_38.png

... you may notice that Wolfram | Alpha provides for this number its analytical approximation as a sine function of the argument x = π / 88 (the first of the three possible analytical forms presented above in the “Possible closed forms” section). If you are interested in this, you could ask Wolfram | Alpha to provide a list of all the “special” values ​​of the sine function arguments and its values ​​with these values ​​of the argument immediately. One of the most beautiful examples of this type is the representation of the value of sin (π / 17) through radicals , which demonstrates one of the classic results that was obtained by the great mathematician Gauss on the day of his 17th birthday .

You can ask Wolfam | Alpha whether any expressions have certain properties or form:

• Is the number sin (2/3) algebraic?

Wolfram | Alpha : Is sin request (2/3) algebraic?

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_39.png

Top-100-sines-of-Wolfram-Alpha_40.png

• Representation of the number sin (pi / (2 ^ 4 3 5)) through radicals

Wolfram | Alpha : Toradicals Request (sin (pi / (2 ^ 4 3 5)))

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_41.png

Top-100-sines-of-Wolfram-Alpha_42.png

You can search for periods of various functions:

• The period of the function sin (x)

Wolfram | Alpha Request : Period of sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_43.png

Top-100-sines-of-Wolfram-Alpha_44.png

• The period of the function sin (x) + 2sin (2x) + 3sin (3x)

Wolfram | Alpha Request : Period of sin (x) + 2sin (2x) + 3sin (3x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_45.png

Top-100-sines-of-Wolfram-Alpha_46.png

And also find the maxima and minima of the functions containing the sine function:

• Find the minimum of the function sin (x) + | x |

Wolfram | Alpha Request : Minimize sinx + | x |

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_47.png

Top-100-sines-of-Wolfram-Alpha_48.png

• Find the maximum of the function (sin (x) / x) ^ 2 located between the points π and 4π

Wolfram | Alpha : Maximize query (sin (x) / x) ^ 2 between pi and 4 pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_49.png

Top-100-sines-of-Wolfram-Alpha_50.png

We can also build both two-dimensional and three-dimensional Lissajous figures:

• Graph of parametrically given two-dimensional curve {sin (11t), sin (13t)}

Wolfram | Alpha Query : Parametric plot {sin (11t), sin (13t)}

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_51.png

Top-100-sines-of-Wolfram-Alpha_52.png

• Graph of parametrically given three-dimensional curve {sin (2t), sin (3t), sin (5t)} from t = 0 to 2pi

Wolfram | Alpha query : Parametric plot {sin (2t), sin (3t), sin (5t)} from t = 0 to 2pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_53.png

Top-100-sines-of-Wolfram-Alpha_54.png

The result of the query is Parametric plot {sin (11t), sin (13t)} which was mentioned above:

Top-100-sines-of-Wolfram-Alpha_55.png

You can not only build curves, but also calculate their curvature:

• Curvature of a parametrically given curve {sin (3t), sin (4t)} at the point t = 1

Wolfram | Alpha query : Curvature of {sin (3t), sin (4t)} at t = 1

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_56.png

Top-100-sines-of-Wolfram-Alpha_57.png

Find the coordinates of the points of inflection of the curve:

• sin (x) curve inflection points

Wolfram | Alpha Request : Inflection points sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_58.png

Top-100-sines-of-Wolfram-Alpha_59.png

Or the length of the arc curve:

• Arc length of a parametrically given curve {sin (t), sin (2t)} at t = 0 to π

Wolfram | Alpha query : Arc length {sin (t), sin (2t)} from t = 0 to pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_60.png

Top-100-sines-of-Wolfram-Alpha_61.png

Top-100-sines-of-Wolfram-Alpha_62.png

Top-100-sines-of-Wolfram-Alpha_63.png

• The arc length of the polar curve is r = phi sin (phi) with phi = 0 to 12π

Wolfram | Alpha query : Arc length r = phi sin (phi) from phi = 0 to 12pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_64.png

Top-100-sines-of-Wolfram-Alpha_65.png

Top-100-sines-of-Wolfram-Alpha_66.png

Top-100-sines-of-Wolfram-Alpha_67.png

Below is the result that Wolfram | Alpha gives to the previous query about the length of the curve defined in the polar coordinate system:

Top-100-sines-of-Wolfram-Alpha_68.png

You can find the return point of some function:

• Return points of the function | sin (x) |

Wolfram | Alpha : Corners | sin (x) | Request |

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_69.png

Top-100-sines-of-Wolfram-Alpha_70.png

Or check the function for frequency:

• Is sin (4x + pi / 3) periodic?

Wolfram | Alpha Request : Periodicity sin (4x + pi / 3)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_71.png

Top-100-sines-of-Wolfram-Alpha_72.png

There are many mathematical formulas that may be required. Consider a few specific examples:

• Present as a sum sin (x) ^ 10

Wolfram | Alpha Request : Trig reduce sin (x) ^ 10

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_73.png

Top-100-sines-of-Wolfram-Alpha_74.png

• Present as a sum sin (10x)

Wolfram | Alpha Query : Trig expand sin (10x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_75.png

Top-100-sines-of-Wolfram-Alpha_76.png

Similarly, you can get the basic formulas of trigonometry:

• Half-angle formula for sin (x) function

Wolfram | Alpha Request : Half-angle formulas sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_77.png

Top-100-sines-of-Wolfram-Alpha_78.png

• Double angle formula for sin (x) function

Wolfram | Alpha Request : Double-angle formulas sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_79.png

Top-100-sines-of-Wolfram-Alpha_80.png

• Sine formulas of the sum (difference) of two or more arguments

Wolfram | Alpha Request : Addition formulas sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_81.png

Top-100-sines-of-Wolfram-Alpha_82.png

Below is the result of a query about the double angle formula for sine:

Top-100-sines-of-Wolfram-Alpha_83.png

Wolfram | Alpha also knows many different representations of functions through other functional constructs:

• Representation of the sine in the form of an infinite product

Wolfram | Alpha Request : Product representations sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_84.png

Top-100-sines-of-Wolfram-Alpha_85.png

• Presentation of sine as limit

Wolfram | Alpha Request : Limit representations sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_86.png

Top-100-sines-of-Wolfram-Alpha_87.png

• Representation of sine through hypergeometric functions

Wolfram | Alpha : Sinx request in terms of hypergeometrics

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_88.png

Top-100-sines-of-Wolfram-Alpha_89.png

You can ask Wolfram | Alpha about the connection of the sine function with other functions:

• Representation of the function sin (x) through exponential exponential function

Wolfram | Alpha : Sinx in exponentials request

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_90.png

Top-100-sines-of-Wolfram-Alpha_91.png

• Relationship between sin (x) and cos (x)

Request in Wolfram | Alpha : Relations between sin (x), cos (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_92.png

Top-100-sines-of-Wolfram-Alpha_93.png

• Links between sin (x) and tg (x)

Wolfram | Alpha request : Relationship between sinx, tanx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_94.png

Top-100-sines-of-Wolfram-Alpha_95.png

You can also find a connection with the inverse function and other functions expressed through sine:

• Feedback with inverse function for sin (x)

Wolfram | Alpha query : Relations with inverse function sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_96.png

Top-100-sines-of-Wolfram-Alpha_97.png

• Functions that have proper names, expressed in terms of sin (x)

Wolfram | Alpha : Named functions request through through sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_98.png

Top-100-sines-of-Wolfram-Alpha_99.png

Below is the result of a previous query issued by Wolfram | Alpha:

Top-100-sines-of-Wolfram-Alpha_100.png

You can solve equations and inequalities containing the sine function:

• Find all solutions of the equation cosx + sinx = tanx

Wolfram | Alpha query : Find all solutions for cosx + sinx = tanx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_101.png

Top-100-sines-of-Wolfram-Alpha_102.png

• Solve the inequality cos (x)> 2sin (x)

Wolfram | Alpha : Solve cos (x)> 2sin (x) Request

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_103.png

Top-100-sines-of-Wolfram-Alpha_104.png

It is possible to prove (verify fidelity) of trigonometric identities that include the sine function:

• Check identity sin (x + y) sin (x - y) = sin ^ 2x - sin ^ 2y

Wolfram | Alpha : Verify request : sin (x + y) sin (x - y) = sin ^ 2x - sin ^ 2y

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_105.png

Top-100-sines-of-Wolfram-Alpha_106.png

You can search for break points and poles of functional expressions containing a sine:

• Break points x / sin (x)

Wolfram | Alpha Request : Discontinuities x / sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_107.png

Top-100-sines-of-Wolfram-Alpha_108.png

• The poles of the function x / sin (x)

Wolfram | Alpha Request : Poles x / sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_109.png

Top-100-sines-of-Wolfram-Alpha_110.png

You can differentiate the sine function:

• Find the value of the sixth derivative of the function x sin (2 ^ x) with x = 0

Wolfram | Alpha query : Sixth derivative of x sin (2 ^ x) at x = 0

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_111.png

Top-100-sines-of-Wolfram-Alpha_112.png

• Find the n-th derivative of the function sin (x)

Wolfram | Alpha : d ^ n / dx ^ n sin (x) query

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_113.png

Top-100-sines-of-Wolfram-Alpha_114.png

You can find the final amount:

• Find the sum of sin (kx) with k = 1 to n

Wolfram | Alpha query : Sum sin (kx) for k = 1 to n

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_115.png

Top-100-sines-of-Wolfram-Alpha_116.png

And, of course, it is also easy to find various integrals containing a sine:

• Find the integral of the function sin (x) over the variable x ranging from 0 to π

Wolfram | Alpha query : Integrate sin (x) dx from x = 0 to pi

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_117.png

Top-100-sines-of-Wolfram-Alpha_118.png

• Find the indefinite integral of the function sin (x ^ 3) ^ 3 over x

Wolfram | Alpha query : Integrate sin (x ^ 3) ^ 3 dx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_119.png

Top-100-sines-of-Wolfram-Alpha_120.png

• Apply the integration formula in parts to an integral with the integrand function cos ^ 2 (x) sin ^ 4 (x)

Wolfram | Alpha Request : Integrate by parts cos ^ 2 (x) sin ^ 4 (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_121.png

Top-100-sines-of-Wolfram-Alpha_122.png

• The mean square value of the sin function (4x + pi / 3)

Wolfram | Alpha Request : Root mean square sin (4x + pi / 3)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_123.png

Top-100-sines-of-Wolfram-Alpha_124.png

Below is the result of the integration request in parts (see above) issued by Wolfram | Alpha:

Top-100-sines-of-Wolfram-Alpha_125.png

You can get lists of formulas based on integrals, sums, series and products that would contain the sine function:

• Final amounts containing sine

Wolfram | Alpha Query : Finite sums containing sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_126.png

Top-100-sines-of-Wolfram-Alpha_127.png

• Infinite amounts containing sine

Wolfram | Alpha query : Infinite sums containing sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_128.png

Top-100-sines-of-Wolfram-Alpha_129.png

• Works containing sine

Wolfram | Alpha Request : Products containing sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_130.png

Top-100-sines-of-Wolfram-Alpha_131.png

• Indefinite integrals containing sine

Wolfram | Alpha Request : Indefinite integrals containing sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_132.png

Top-100-sines-of-Wolfram-Alpha_133.png

• Certain integrals containing sine

Wolfram | Alpha Request : Definite integrals containing sinx

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_134.png

Top-100-sines-of-Wolfram-Alpha_135.png

You can find various integral transforms of the sine function:

• Fourier transform of the sin (x) function

Wolfram | Alpha : Fourier transform of sin (x) query

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_136.png

Top-100-sines-of-Wolfram-Alpha_137.png

• The Laplace transform of the sin (x) function

Wolfram | Alpha Query : Laplace transform of sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_138.png

Top-100-sines-of-Wolfram-Alpha_139.png

• Hilbert transform function of of sin (x)

Wolfram | Alpha : Hilbert transform of sin (x) query

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_140.png

Top-100-sines-of-Wolfram-Alpha_141.png

You can also calculate various limits:

• Limit as x approaches the 0 function ln (2 + sqrt (arctan (x) * sin (1 / x)))

Wolfram | Alpha query : Limit as x goes to 0 of ln (2 + sqrt (arctan (x) * sin (1 / x)))

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_142.png

Top-100-sines-of-Wolfram-Alpha_143.png

• sin (x) / x limit with x -> 0

Wolfram | Alpha Request : Lim sin (x) / x as x -> 0

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_144.png

Top-100-sines-of-Wolfram-Alpha_145.png

Below is the result of a request to search for the previous limit that Wolfram | Alpha issues:

Top-100-sines-of-Wolfram-Alpha_146.png

You can get the decomposition of the sine function in a row:

• Find the decomposition of the function sin (x) to the tenth order of smallness in a neighborhood of the point x = 0

Wolfram | Alpha Request : Series of sin (x) to order 10

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_147.png

Top-100-sines-of-Wolfram-Alpha_148.png

Find the sum of the Taylor series of infinite order in analytical form:

• Sum the partial sums of the Taylor series of the sin (x) function

Wolfram | Alpha Query : Summed truncated Taylor series of sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_149.png

Top-100-sines-of-Wolfram-Alpha_150.png

Or get a Pade approximation of the sine function:

• [5/5] Pade approximation of sin (x) function

Wolfram | Alpha Request : [5/5] pade of sin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_151.png

Top-100-sines-of-Wolfram-Alpha_152.png

Or you can simplify complex expressions that contain a sine:

• Simplify sin (2 arctan (3x) + pi)

Wolfram | Alpha Query : Simplify sin (2 arctan (3x) + pi)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_153.png

Top-100-sines-of-Wolfram-Alpha_154.png

Below is the result of a request to simplify the trigonometric expression, discussed above, which gives Wolfram | Alpha:

Top-100-sines-of-Wolfram-Alpha_155.png

It is also easy to find the decomposition of a function in a Fourier series in sines:

• Expansion of the function unitstep (x) in a Fourier series in sine

Wolfram | Alpha Request : Fourier sin series unitstep (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_156.png

Top-100-sines-of-Wolfram-Alpha_157.png

The sine function has many related functions and generalizations that include, but are not limited to, say the following:

• haversin (x)

Wolfram | Alpha Request : haversin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_158.png

Top-100-sines-of-Wolfram-Alpha_159.png

• versin (x)

Wolfram | Alpha query : versin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_160.png

Top-100-sines-of-Wolfram-Alpha_161.png

• qsin (x)

Wolfram | Alpha query : qsin (x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_162.png

Top-100-sines-of-Wolfram-Alpha_163.png

Top-100-sines-of-Wolfram-Alpha_164.png

You can use the sine function in probability theory, for example, you can find the expectation of a random variable sin (x) if the random variable x is normally distributed with a expectation of 0 and a variance of 1:

• Mathematical expectation sin (x) if x has a standard normal distribution

Wolfram | Alpha : E (sin (x)) query where x ~ N (0.1)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_165.png

Top-100-sines-of-Wolfram-Alpha_166.png

Below is the result of a query about the value of the mathematical expectation of the expression sin (x), discussed above, which gives Wolfram | Alpha:

Top-100-sines-of-Wolfram-Alpha_167.png

We can find solutions to differential equations containing sine:

• y '+ sinx y = 0

Request Wolfram | Alpha : y '+ sinx y = 0

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_168.png

Top-100-sines-of-Wolfram-Alpha_169.png

• y “- 1/3 y '+ sin xy ^ 3 = 0

Request in Wolfram | Alpha : y ”- 1/3 y '+ sin xy ^ 3 = 0

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_170.png

Top-100-sines-of-Wolfram-Alpha_171.png

• cos (x) dx + sin (y) dy = 0

Wolfram | Alpha query : cos (x) dx + sin (y) dy = 0

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_172.png

Top-100-sines-of-Wolfram-Alpha_173.png

You can calculate the Vronskian system of functions, which contains the sine:

• Wronskian system of functions {cos (x), sin (x)}

Request Wolfram | Alpha : Wronskian ({cos (x), sin (x)}, x)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_174.png

Top-100-sines-of-Wolfram-Alpha_175.png

And you can also find a differential equation whose solution is a given function depending on the sine:

• Find the differential equation for the function sin (x ^ p)

Wolfram | Alpha : Differential equation for sin (x ^ p) query

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_176.png

Top-100-sines-of-Wolfram-Alpha_177.png

You can work with the sine theorem or its spherical analogue:

• Sine Theorem Calculator

Wolfram | Alpha Request : sine law calculator

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_178.png

Top-100-sines-of-Wolfram-Alpha_179.png

• Sinus theorem in spherical geometry

Wolfram | Alpha Request : spherical law of sines

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_180.png

Top-100-sines-of-Wolfram-Alpha_181.png

Below is the result of the query calculator of the sine theorem, discussed above, which gives Wolfram | Alpha:

Top-100-sines-of-Wolfram-Alpha_182.png

You can express and approximate the value of the number π through the values ​​of the sine function:

• Express 3.14 in sin (1) and sin (2)

Wolfram | Alpha Request : Express 3.14 through sin (1) and sin (2)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_183.png

Top-100-sines-of-Wolfram-Alpha_184.png

And also get an interactive model of the sine function:

• Vary the parameters a, b, c in the expression Plot [a Sin [bx + c], {x, -3, 3}]

Wolfram | Alpha query : Vary Plot [a Sin [bx + c], {x, -3, 3}]

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_185.png

Top-100-sines-of-Wolfram-Alpha_186.png

You can also perform calculations on objects that are on the Internet, if you just have a link to them, for example, we perform an image analysis of the sine function, which is taken from The Wolfram Functions Site website about the Wolfram Research functions:

• Perform analysis of wolfr.am/OA39R2

Wolfram | Alpha query : Analyze wolfr.am/OA39R2

Below is the result of a previous query that Wolfram | Alpha issues:

Top-100-sines-of-Wolfram-Alpha_189.png

Finally, you can "play" the sine function:

• Play sin (440 t)

Wolfram | Alpha : Play sin request (440 t)

Wolfram Language (Mathematica) Code :

Top-100-sines-of-Wolfram-Alpha_190.png

Top-100-sines-of-Wolfram-Alpha_191.png

Of course, we can continue further (and further and further), but there are surely enough written examples (there are actually a lot of them).

Source: https://habr.com/ru/post/255021/


All Articles