Once I needed animated graphics for the presentation. With the graphs, in fact, there were no problems, and for their animation I had to use another animation package that can be installed from CRAN. install.packages("animation") library(animation) animation uses the ImageMagick software package during image processing, so it is advisable to install it in advance. Under Windows, I did not test the performance of this solution. saveGIF({ # - ,    }, movie.name=..., interval=..., ani.width=..., ani.height=...) 
r , which is usually called the reproduction rate. Actually, the function itself is rather dull and has a very trite schedule. Interesting things manifest themselves if we consider its bifurcation diagram : by changing the parameter r , we can observe the “dynamics” of the fixed points of the equation . We write the logistic mapping in R as such a function: logistic.map <- function(r, x0, n, m){ x <- rep(x0, n) for(i in 1:(n-1)) { x[i+1] <- r * x[i] * (1 - x[i]) } return(x[(nm):n]) }  nrows <- 6 r.len <- 1500; # Points of interest on the plot R <- matrix(c( seq(2.4, 4, length.out=r.len), seq(3.442420, 3.639398, length.out=r.len), seq(3.562297, 3.572910, length.out=r.len), seq(3.569792, 3.570244, length.out=r.len), seq(3.570005, 3.571369, length.out=r.len), seq(3.631992, 3.633301, length.out=r.len) ), nrow=nrows, byrow=T) X <- matrix(c( 0, 1, 0.8567335, 0.9140401, 0.8887529, 0.8936790, 0.8920580, 0.8925577, 0.8911242, 0.8927333, 0.9066966, 0.9083943 ), nrow=nrows, byrow=T) x0 <- 0.5 n <- 200 m <- 170 saveGIF({ for (i in 1:nrows){ r <- R[i,] x <- as.vector(sapply(r, logistic.map, x0, n, m)) r <- sort(rep(r, (m+1))) del_idx <- unlist(sapply(1:length(x), function(j) if (x[j] < X[i, 1] | x[j] > X[i, 2]) j)) if (length(del_idx > 0)){ x <- x[-del_idx] r <- r[-del_idx] } plot(x ~ r, col="gray66", pch=".", main="Bifurcation Diagram for the Logistic Map") } }, movie.name = "bifur.gif", interval=2.4, ani.width=600, ani.height=500) 


r . The second shows how much branch n is longer than branch n + 1. So, it turns out that

 lorenz.solution <- function(sigma=10, r=28, beta=8/3, x=0.01, y=0.01, z=0.01, dt=0.001, n=30000){ sol <- array(0, dim=c(n,3)) t <- 0 for(i in 1:n){ x0 <- x; y0 <- y; z0 <- z x <- x0 + (y0 - x0) * sigma * dt y <- y0 + ((r - z0) * x0 - y0) * dt z <- z0 + (x0 * y0 - beta * z0) * dt t <- t + dt sol[i,] <- c(x, y, z) } return(sol) } 
 library(scatterplot3d) saveGIF({ for (r in 2:34){ sol <- lorenz.solution(r=r) s3d<-scatterplot3d(sol[,1], sol[,2], sol[,3], color="gray66", angle=15, box=F, grid=F, axis=F, pch=".", main=paste0("Lorenz Attractor with rho=", r)) } }, movie.name = "lorenz.gif", interval=.3, ani.width=500, ani.height=500) 

 chen.solution <- function(a=40, c=28, b=3, x=-0.1, y=0.5, z=-0.6, dt=0.001, n=30000){ sol <- array(0, dim=c(n,3)) t <- 0 for(i in 1:n){ x0 <- x; y0 <- y; z0 <- z x <- x0 + (y0 - x0) * a * dt y <- y0 + ((c - a) * x0 - x0 * z0 + c * y0) * dt z <- z0 + (x0 * y0 - b * z0) * dt t <- t + dt sol[i,] <- c(x, y, z) } return(sol) } saveGIF({ for (a in 32:45){ sol <- chen.solution(a=a) s3d<-scatterplot3d(sol[,1], sol[,2], sol[,3], color="gray66", angle=15, box=F, grid=F, axis=F, pch=".", main=paste0("Chen Attractor with a=", a)) } }, movie.name = "chen.gif", interval=.25, ani.width=500, ani.height=500) 
Source: https://habr.com/ru/post/215789/
All Articles